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Abstract 

Modeling player engagement is a key challenge in games. 
However, the gameplay signatures of engaged players can be 
highly context-sensitive, varying based on where the game is 
used or what population of players is using it. Traditionally, 
models of player engagement are investigated in a particular 
context, and it is unclear how effectively these models 
generalize to other settings and populations. In this work, we 
investigate a Bayesian hierarchical linear model for multi-

task learning to devise a model of player engagement from a 
pair of datasets that were gathered in two complementary 
contexts: a Classroom Study with middle school students and 
a Laboratory Study with undergraduate students. Both groups 
of players used similar versions of CRYSTAL ISLAND, an 
educational interactive narrative game for science learning. 
Results indicate that the Bayesian hierarchical model 
outperforms both pooled and context-specific models in 

cross-validation measures of predicting player motivation 
from in-game behaviors, particularly for the smaller 
Classroom Study group. Further, we find that the posterior 
distributions of model parameters indicate that the coefficient 
for a measure of gameplay performance significantly differs 
between groups. Drawing upon their capacity to share 
information across groups, hierarchical Bayesian methods 
provide an effective approach for modeling player 

engagement with data from similar, but different, contexts. 

 Introduction   

Recent years have seen growing interest in player modeling 

in games. A key challenge in player modeling is devising 

models of player engagement. Engagement has several core 

components—these include cognitive, emotional, and 

behavioral dimensions—as well as complex relationships 

with related constructs such as motivation and interest 

(Fredricks, Blumenfeld, and Paris 2004; D’Mello, Dieterle, 

and Duckworth 2017). By inducing models of player 

engagement from gameplay data using machine learning, 

we can develop a better understanding of how players 

engage and disengage with games (Hadiji et al. 2014; 

Bertens et al. 2017; Demediuk et al. 2018). Predictive 
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models of player engagement have a broad range of 

applications, ranging from predicting player churn in online 

games (Demediuk et al. 2018), understanding how students 

interact with games for learning (Sabourin and Lester 2014), 

and driving player-adaptive experience managers for 

personalizing gameplay (Yu and Riedl 2015). 

A key challenge in modeling player engagement is 

accounting for varying contexts in which player interactions 

with games occur. The gameplay signatures of engaged 

players may vary significantly depending on players’ traits, 

where they used the game, when they used the game, and 

which version of the game they played. There are many open 

questions regarding how effectively player-analytic models 

generalize between games, players, and settings. Further, 

there is limited understanding of how we can leverage data 

from one context (i.e., one group of players in setting A) in 

order to improve player analytic models for a different 

context (i.e., a different group of players in setting B).  

In this work, we address this question by modeling player 

engagement in two considerably different contexts using a 

multi-task learning framework (Bakker and Heskes 2003). 

Specifically, we utilize Bayesian hierarchical linear models 

to predict players’ intrinsic motivation from in-game 

behavior data. Bayesian hierarchical models enable usage of 

prior distributions for model parameters, which are shared 

between contexts, as well as posterior distributions for 

model parameters, which are specific to each context and 

learned from data. In order to train and evaluate multi-task 

models of player engagement, we utilize data from player 

interactions with an educational interactive narrative game 

for middle school science called CRYSTAL ISLAND. We draw 

upon two complementary datasets that were gathered from 

a pair of studies representing different contexts. The first 

context, which we call the Laboratory Study, took place in 

a controlled laboratory setting with undergraduate students 

using a baseline version of the CRYSTAL ISLAND game 

(Taub et al. 2017). The second study, which we call the 

Classroom Study, took place in a middle school science 
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classroom with eighth-grade students using a modified 

version of CRYSTAL ISLAND that was enhanced to support 

students’ reflection processes. Using this data, we compare 

a multi-task model of player engagement to both pooled and 

context-specific models of player engagement induced with 

the same data. Further, we investigate the uncertainty of the 

model’s parameters, and we compare them across tasks to 

investigate their predictive value in Laboratory and 

Classroom Study contexts.  

Related Work  

Player modeling is critical for understanding how players 

experience games. A key area of research on player 

engagement is modeling player churn, which aims to detect 

player disengagement, or when players stop playing a game, 

using logs of players’ in-game behaviors (Mahlmann et al. 

2010; Hadiji et al. 2014). Runge et al. (2014) predicted 

churn rates in a social game and assessed the business value 

of churn prediction through a controlled experiment that 

attempted to maintain players. Xie et al. (2015) expanded 

upon this work by devising a more generalizable feature 

representation that used frequency of game events to predict 

player disengagement. More recently, Demediuk et al. 

(2018) used mixed effects Cox Regression for survival 

analysis to predict player churn in League of Legends. 

Bertens et al. (2017) developed a game churn prediction 

model from survival ensembles that scales to games with 

millions of users. Together, this work on data-driven models 

of player churn has shown significant promise for enriching 

our understanding of player engagement, but it provides few 

guarantees about the models’ generalizability to new 

populations of players or new versions of the games. Other 

work has sought to address this problem by investigating 

generalized models that use game-independent features, but 

these methods potentially abstract away information that 

could be useful within a particular game but are not present 

in other games (Shaker, Shaker, and Abou-Zleikha 2015). 

 Multi-task learning and transfer learning provide a family 

of machine-learning techniques that use knowledge, models, 

and data from similar tasks to enhance the performance on 

new tasks. Specifically, multi-task learning tries to learn 

models for both source and target tasks simultaneously. 

Transfer learning aims to improve performance on a target 

task using information from a source task (Pan and Yang 

2010). To date, there has been relatively little research on 

applications of transfer learning in games and player 

modeling. Snodgrass and Ontanon (2016) used domain 

transfer to generate game levels for three classic video 

games. Shaker and Abou-Zleikha (2016) showed that 

transferring knowledge of player experience between two 

games is possible through feature replacement between 

tasks. In our work, there are several features that are shared 

between multiple contexts, and thus we seek a method that 

can effectively utilize shared features for each group (i.e., 

conditioned upon the particular setting, population, and 

version of the game that players are using).  

 In order to model player engagement across multiple 

contexts, we utilize hierarchical Bayesian models for multi-

task learning. Hierarchical Bayesian models have proven 

useful across a wide variety of applications, including 

modeling radon measurements (Gelman 2006), student 

exam score prediction (Bakker and Heskes 2003), and 

newspaper sales modeling (Vehtari et al. 2017). In this 

work, we use hierarchical Bayesian models with data from 

two versions of an educational interactive narrative game to 

predict player motivation from logs of in-game actions. 

Dataset 

CRYSTAL ISLAND is an educational interactive narrative 

game where players take on the role of a medical field agent 

who must solve a mystery about an infectious outbreak on a 

remote island. In the game, players explore a 3D virtual 

environment, interact with non-player characters, 

manipulate objects that may have transmitted the disease, 

conduct experiments in a virtual laboratory, read scientific 

books and articles, and record their findings in a science 

notebook. CRYSTAL ISLAND has been used by thousands of 

middle grade students in K-12 schools in the United States 

and internationally, and it has been shown to provide 

significant benefits for science learning (Rowe, Shores, 

Mott, and Lester, 2011). In this work, we utilize data from 

two studies involving CRYSTAL ISLAND. Each study 

involved a different group of students, took place in a 

different research setting, and centered on a slightly 

different version of the CRYSTAL ISLAND software.  

The Laboratory Study was conducted in a laboratory 

setting at a large mid-Atlantic university with college-aged 

students ranging from 18 to 26 years old (M = 20.1, SD = 

1.6). The original study assigned students to three different 

experimental conditions, but in this work, we utilize data 

from only one of the conditions, which involved students 

using a standard version of the CRYSTAL ISLAND game 

Figure 1: Screenshot of the infirmary in the CRYSTAL ISLAND 
educational interactive narrative. 
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(Taub et al. 2017). In this study condition, there were a total 

of 68 students, and after removing 5 due to corrupted or 

missing game trace logs, the study contained data for 63 

students (66.7% female). Participants in this condition 

played CRYSTAL ISLAND until they solved the mystery 

(95%), which resulted in a range of total gameplay durations 

from 35.5 minutes to 160.7 minutes (M = 69.5, SD = 22.0). 

During the study, students also completed a pre- and post-

test of science content knowledge, where 49 participants 

(78%) demonstrated positive learning gains with an average 

normalized learning gain of 0.267 (SD = 0.26). 

The Classroom Study was conducted at a middle school 

in the mid-Atlantic region within an eighth-grade science 

class, providing data for 44 students ranging in age from 13 

to 14 (M = 13.4, SD = 0.5). The study was tied to the regular 

microbiology unit in students’ science class, and therefore 

students received complementary instruction about 

microbiology prior to exploring CRYSTAL ISLAND. Students 

played the game until solving the mystery (59%) or two 

class periods had expired, with a range of total gameplay 

lasting from 31.4 minutes to 143 minutes (M = 79.1, SD = 

19.9). Students in this study used a slightly modified version 

of CRYSTAL ISLAND in which reflection prompts were given 

at specific milestones in the game. These prompts asked 

students to rate their progress on a scale of 1-10 and reflect 

on their progress toward solving the mystery. Students took 

a similar pre- and post-test as the Laboratory Study group, 

but three questions were removed for being too difficult for 

middle-school students. Students in the Classroom Study 

also demonstrated positive learning gains, as 24 participants 

(55%) achieved positive learning gains with an average 

normalized learning gain of 0.028 (SD = 0.252). 

In addition to the science content pre- and post-tests, 

students in both studies also completed several other 

attitudinal questionnaires, including the Intrinsic Motivation 

Inventory (IMI; Ryan 1982). The IMI is a questionnaire that 

measures participants’ subjective experience related to a 

target activity, and it is grounded in self-determination 

theory, which is a general theory of human motivation 

(Ryan 1982). The survey consists of 29 items in which 

students respond on a 7-point Likert scale, and it has been 

validated across a range of domains (McAuley 1989). The 

survey includes seven subscales, but the primary subscale 

utilized here is the Interest-Enjoyment subscale, which 

consists of 7 items that provide a self-report measure of 

students’ intrinsic motivation toward CRYSTAL ISLAND. In 

this work, we seek to devise models of player engagement 

by predicting student responses on the Interest-Enjoyment 

subscale of the IMI using predictor features distilled from 

trace logs of students’ in-game behaviors.  

To predict player motivation, several features were 

extracted from the game trace logs generated by CRYSTAL 

ISLAND. These features consisted of in-game problem-

solving behaviors standardized for the duration students 

spent performing the behaviors relative to their time in the 

game. Specifically, the features included the following:  

• Proportion of time spent conversing with non-player 

characters 

• Proportion of time spent reading books and articles 

• Proportion of time spent testing virtual objects 

• Proportion of time spent editing in-game diagnosis  

• Binary indicator of whether the mystery was solved  

• Proportion of gameplay time spent answering 

reflection prompts (for the Classroom Study group) 

• Average response on the in-game reflection prompts 

(on a 1-10 scale, for the Classroom Study group) 

• Final game score, which is a measure created by 

domain experts to assess students’ problem-solving 

process roughly ranging between +/- 1500 (Rowe et 

al. 2011) 

Each of these was standardized to a zero-mean unit 

normal distribution. Table 1 presents mean and standard 

deviations for each of these features prior to standardization 

for each group. 

 

 Laboratory 

Mean (Std) 

Classroom 

Mean (Std) 

Conversation 0.13 (0.027) 0.11 (0.036) 

Reading 0.40 (0.083) 0.30 (0.14) 

Testing Objects 0.028 (0.016) 0.029 (0.017) 

Diagnosis  0.091 (0.040) 0.018 (0.021) 

Solved Mystery 0.95 0.59 

Prompt Time N/A 0.083 (0.034) 

Prompt Response N/A 6.59 (1.84) 

Game Score 674 (616) 34.4 (760) 

IMI Score 4.65 (1.36) 5.25 (1.14) 

Table 1. Summary statistics of in-game features and response 

variable (IMI Score) used for modeling player engagement. 

Bayesian Hierarchical Linear Models of  

Player Engagement 

Multi-task learning involves performing multiple parallel 

tasks (in this case, predicting player motivation in different 

settings) with a single shared model, taking advantage of 

structural similarities between the tasks in order to improve 

generalization. We compare three methods for approaching 

the multi-task problem: (1) the Pooled Model, where all data 

is pooled into the same group, (2) the Context-Specific 

Model, where each group is fitted with its own regularized 

model, and (3) the Bayesian Hierarchical Model, which 

aims to fit each group individually while sharing 

information between groups through shared latent priors. 

The Pooled Model omits information by treating each group 

equally, potentially underfitting the data. The Context-
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Pooled Model’s weak predictive performance on the 

Classroom Study group, which suggests that modeling the 

two groups separately is preferable to take advantage of  

inherent differences between the two contexts. However, the 

Context-Specific Model appears to overfit the smaller 

Classroom Study group, achieving a negative R2 = -0.251, 

despite using L2-regularization during training. The R2 for 

the Hierarchical Model indicates that its predictions yield a 

13.9% reduction (i.e., improvement) in MSE relative to a 

baseline mean predictor. It similarly yields a 3.4% reduction 

in MSE relative to the Pooled Model’s predictions across all 

students and a 6.8% reduction relative to the Pooled Model’s 

predictions for the smaller Classroom Study group. 

 

Table 2. 10-fold cross-validation results for predictive accuracy 

between models and contexts. 

Posterior Distributions of Model Parameters 
A key benefit of the Bayesian approach to modeling player 

engagement is that samples from posterior distributions of 

the model parameters can be used to summarize, compare, 

and draw inferences about the models. Since the Bayesian 

Hierarchical Linear Model outperforms the Pooled and 

Context-Specific models in predictive performance, 

inferences can be drawn from the induced posterior 

distributions for the model parameters. Table 3 shows 

summary statistics for the posteriors for each group in the 

Hierarchical Model. The row labeled “Uncertainty” lists the 

estimated standard deviations for the residuals 𝜎 . 

Table 3 reveals that several model parameters differ based 

upon whether they are associated with the Classroom Study 

context or Laboratory Study context. For example, the 

difference in posterior distributions for the Reading 

Duration coefficient is notable, as this indicates that reading 

in the Classroom Study group was less predictive of player 

motivation than in the Laboratory Study group. The 

uncertainty parameter is also higher in the Laboratory Study 

group, indicating that model predictions in this context are 

less certain than in the Classroom Study context, which is 

further reflected in the overall predictive accuracy of the 

respective models (Table 2).  

 The largest difference in parameter estimates between 

groups is for the Game Score feature. Figure 3 plots the 

posterior distribution of the Game Score parameter for both 

the Laboratory Study and Classroom Study groups using 

5000 MCMC samples from the full dataset. In 97.6% of 

these posterior samples, the Game Score parameter for the 

Laboratory Study group is larger than the Classroom Study 

group, indicating a statistically significant difference.  

 

Table 3. Summary statistics of the posterior distributions of 

model parameters in the Bayesian Hierarchical Linear Model. 

Transfer to Future Tasks 
After fitting the Bayesian hierarchical linear model, the 

latent variables representing the prior mean of each group, 

which allow sharing of information between contexts, are 

not used in predictions. However, these latent variables can 

be used in future transfer tasks, where similar features are 

available to predict player motivation, as the prior 

distributions for the model parameters. Using prior means 

provides a method for addressing the cold start problem in 

player modeling, where a model initially provides poor 

predictions because it has not yet seen enough data to 

estimate its model parameters effectively. This issue arises 

whenever we seek to devise a model of player engagement 

for a new setting—in the case of CRYSTAL ISLAND, this 

could be in a museum or home—or with a new population 

of players, such as high school students. The distribution of 

the prior means is shown in Figure 4, and it conveys the 

uncertainty associated with estimating each parameter in a 

future player modeling task. For example, the distribution of 

the prior mean for the Game Score parameter has a wider 

spread than many other parameters, suggesting greater 

uncertainty about how this feature would transfer to future 

modeling tasks. 

Discussion 

The Bayesian hierarchical linear model outperformed both 

the Pooled Model and Context-Specific Model in predicting 

player motivation from in-game actions. The Pooled Model 

 
Pooled 

Context-

Specific 
Hierarchical 

All MSE 1.520 1.677 1.469 

Lab MSE 1.583 1.688 1.565 

Class MSE 1.430 1.662 1.332 
    

All R2 0.106 0.0129 0.139 

Lab R2 0.143 0.0826 0.156 

Class R2 -0.0752 -0.251 0.0341 

 Laboratory  Classroom 

 Mean Std  Mean Std 

Intercept 4.68 0.15  5.22 0.16 

Game Score 0.54 0.28  -0.14 0.24 

Solved Mystery 0.30 0.23  0.23 0.23 

Conversation -0.28 0.17  -0.15 0.17 

Reading 0.04 0.23  -0.18 0.19 

Worksheet 0.04 0.21  0.02 0.16 

Scanner 0.10 0.23  0.07 0.19 

Prompt Time - -  0.34 0.19 

Prompt Response - -  0.40 0.17 

Uncertainty 1.19 0.11  1.06 0.13 
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